LASER SYSTEM ENCLOSURES

Schmidt Marking Systems will design a laser system to fit your specific part marking application. Our class 1 certified laser enclosures feature safety interlocks for light tight marking environments. Our enclosures can be furnished with a variety of system options such as manual or programmable power z-axis for laser focus adjustment, rotary devices for marking on round parts, part feeders, indexing tables, X-Y tables, and vision systems complete with readers and verifiers. Our Fiber, DPSS and CO2 laser systems offer solutions for a variety of applications such as marking, annealing, ablation, deep or fine surface engraving. Schmidt lasers can perform on a variety of materials such as metal alloys, plastics, organics, glass and ceramics. Schmidt can provide an ideal marking solution whether the application involves simple text identification, a complex logo, images, or UID traceability with integration of readers and verifiers.

This economically designed laser enclosure features a manual operated hinged door with safety interlock, a manual z-axis for laser focus adjustment, and self-contained rack mounted controls.

Our newest series of laser system enclosures features a powder coated cabinet with a 22 inch wide stainless steel door. This enclosure has a programmable power z-axis for automatic laser focus adjustment, a removable side panel for convenient access to the laser head and lens, and can be fully customized for larger part configurations.

This custom laser enclosure features a two position rotary indexing table. One set of parts can be loaded outside of the enclosure while another set of parts is being marked inside. The indexing table is equipped with anti-tie-down dual palm controls for operator safety.
Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates. Our fiber lasers are equipped with 4 independent axis terms of marking speed and engraving depth. Fiber lasers higher output power improves marking performance in reliability, setup, flexible programming and control. Its Fiber lasers increase performance in terms of power, other substrates.
Fiber Laser Marking

Schmidt's fiber laser technology represents the ultimate laser marking system in an extremely compact footprint. Fiber lasers are ideal for direct part marking in a range of industries for marking on metal, plastics, polymers and other substrates.

Our fiber lasers are equipped with an independent axis control (X, Y, Z, & R, a rotating axis) to implement multi-plane and rotary marking.

Applications:
- Plastic and metal marking for a variety of industries such as automotive, electronic, and medical
- Laser annealing on precision metal components
- Deep engraving for firearms, heavy equipment, and many other applications
-

- 185, 265, & 305 code marking for identification and traceability

Specifications:
- Rack Dimensions: 106x430x370 mm
- Storing Temp.: 10°C to 50°C
- Operating Temp.: 0° to 55° C
- Cooling: Air Cooled
- Peak Power: 100 nsec
- Wavelength: 1060-1080 nm
- Nominal Power: 100 watts
- Pulse Width: 100 nsec
- Focus Beam: N/A
- Aiming Beam: N/A
- Maximum Output: 1064 nm
- Peak Power: 100 watts
- Pulse Width: 100 nsec
- Focus Beam: N/A
- Aiming Beam: N/A
- Maximum Output: 1064 nm

Applications:
- Excellent beam quality, necessary for marking a broad range of materials, is one of the leading characteristics of the Schmidt fiber laser sources. Best results are obtained on steel, titanium, aluminum, brass, anodized or coated as well as on plastics such as ABS, PP, PET, PTF, and many others.

FIBER LASER MARKING

DPSS Laser Marking

Our DPSS (diode pumped solid state) lasers offer unparalleled performance. They use end pumping technology and are designed for very demanding processes. DPSS lasers represent the ideal solution for direct part marking and are used in virtually every market segment including automotive, solar, electronic, packaging, offset, heavy equipment, medical and more.

Applications:
- Excellent beam quality, necessary for marking a broad range of materials, is one of the leading characteristics of the Schmidt fiber laser sources. Best results are obtained on steel, titanium, aluminum, brass, anodized or coated as well as on plastics such as ABS, PP, PET, PTF, and many others.

Specifications:
- Rack Dimensions: 106x430x370 mm
- Storing Temp.: 10°C to 50°C
- Operating Temp.: 0° to 55° C
- Cooling: Air Cooled
- Peak Power: 100 nsec
- Wavelength: 1060-1080 nm
- Nominal Power: 100 watts
- Pulse Width: 100 nsec
- Focus Beam: N/A
- Aiming Beam: N/A
- Maximum Output: 1064 nm
- Peak Power: 100 watts
- Pulse Width: 100 nsec
- Focus Beam: N/A
- Aiming Beam: N/A
- Maximum Output: 1064 nm

Applications:
- Excellent beam quality, necessary for marking a broad range of materials, is one of the leading characteristics of the Schmidt fiber laser sources. Best results are obtained on steel, titanium, aluminum, brass, anodized or coated as well as on plastics such as ABS, PP, PET, PTF, and many others.

CO2 Laser Marking

Our CO2 lasers are ideal for laser coding and marking applications. CO2 lasers offer permanent marking on a wide range of materials including glass, fiberglass, ceramic, wood, plastic, and painted or anodized metal.

Applications:
- Coding and marking applications in the food, pharmaceutical, and electronic industries
- Marking on paper, cardboard, textiles, and other organic and painted or coated materials

Specifications:
- Rack Dimensions: 157x172x752 mm
- Storing Temp.: 10°C to 50°C
- Operating Temp.: 10°C to 35°C
- Cooling: Air Cooled
- Peak Power: 10 W CO2
- Repetition Rate: 10-200 kHz
- Wavelength: 10,6 nm
- Nominal Power: 10 W CO2
Fiber Laser Marking

Schmidt’s fiber laser technology represents the ultimate laser marking system in an extremely compact footprint. Fiber lasers are ideal for direct part marking in a range of industries for marking on metal, plastics, polymers and other substrates.

Fiber laser systems increase in terms of power, reliability, setup, flexible programming and control. In higher output power improves marking performance in terms of marking speed and engraving depth. Fiber lasers guarantee high reliability even in harsh environments.

Our fiber lasers are equipped with an independent axis control (X, Y, Z, & R – rotating axis) and combine multi-layer and rotary marking.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>90x112x298 mm</td>
<td>10°C to 50°C</td>
<td>10°C to 50°C</td>
<td>10,000 VAC - 50/60 Hz</td>
<td>N/A</td>
<td>N/A</td>
<td>0° to 55°C</td>
<td>10 kHz-100 kHz</td>
<td>1060-1080 nm</td>
</tr>
<tr>
<td>184x150x497 mm</td>
<td>10°C to 50°C</td>
<td>10°C to 50°C</td>
<td>10,000 VAC - 50/60 Hz</td>
<td>N/A</td>
<td>N/A</td>
<td>0° to 55°C</td>
<td>10 kHz-100 kHz</td>
<td>1060-1080 nm</td>
</tr>
<tr>
<td>180x150x497 mm</td>
<td>10°C to 50°C</td>
<td>10°C to 50°C</td>
<td>10,000 VAC - 50/60 Hz</td>
<td>N/A</td>
<td>N/A</td>
<td>0° to 55°C</td>
<td>10 kHz-100 kHz</td>
<td>1060-1080 nm</td>
</tr>
</tbody>
</table>

APPLICATIONS:
- Plastic and metal marking for a variety of industries such as automotive, electronics, and medical
- Laser annealing on precision metal components
- Deep engraving for firearms, heavy industry equipment, and many others.
- 2D, UID & 1D code marking for identification applications

FIBER LASER MARKING

The DPSS lasers are an air cooled marking source configured, and available in 15, 15, and 15 watt. There is also a compact 6 watt.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>108x112x497 mm</td>
<td>10°C to 35°C</td>
<td>10°C to 35°C</td>
<td>10,000 VAC - 50/60 Hz</td>
<td>N/A</td>
<td>N/A</td>
<td>0° to 55°C</td>
<td>1 kHz-100 kHz</td>
<td>1060-1080 nm</td>
</tr>
<tr>
<td>165x125x587 mm</td>
<td>10°C to 35°C</td>
<td>10°C to 35°C</td>
<td>10,000 VAC - 50/60 Hz</td>
<td>N/A</td>
<td>N/A</td>
<td>0° to 55°C</td>
<td>1 kHz-100 kHz</td>
<td>1060-1080 nm</td>
</tr>
<tr>
<td>165x125x502 mm</td>
<td>10°C to 35°C</td>
<td>10°C to 35°C</td>
<td>10,000 VAC - 50/60 Hz</td>
<td>N/A</td>
<td>N/A</td>
<td>0° to 55°C</td>
<td>1 kHz-100 kHz</td>
<td>532 nm</td>
</tr>
</tbody>
</table>

APPLICATIONS:
- Excellent laser quality, necessary for marking a broad range of materials, is one of the leading characteristics of the DPSS laser sources. Best results are obtained on steel, titanium, aluminum (bare, anodized or coated) as well as on plastics such as ABS, PP, PEX, PTF, PVC and many others.
- 2D, UID & 1D code marking for identification and traceability applications.

CO2 LASER MARKING

Our CO2 lasers are ideal for laser coding and marking applications. CO2 lasers offer permanent marking on a wide range of materials including glass, ceramic, wood, plastic and painted or anodized metal.

Combining excellent laser beam quality within an advanced control unit, the CO2 lasers are ideal for accurate traceability marking and high productivity coding applications.

APPLICATIONS:
- Coding and marking applications in the food, pharmaceutical, and electronics industries
- Marking on paper, cardboard, textiles, and other organic and painted or coated materials
LASER SYSTEM ENCLOSES

Schmidt Marking Systems will design a laser system to fit your specific part marking application. Our Class 1 certified laser enclosures feature safety interlocks for light tight marking environments. Our enclosures can be furnished with a variety of system options such as manual or programmable power z-axis for laser focus adjustment, rotary devices for marking on round parts, part feeders, indexing tables, X-Y tables, and vision systems complete with readers and verifiers. Our Fiber, DPSS, and CO₂ laser systems offer solutions for a variety of applications such as marking, annealing, ablation, deep or fine surface engraving. Schmidt lasers can perform on a variety of materials such as metal alloys, plastics, organics, glass, and ceramics. Schmidt can provide an ideal marking solution whether the application involves simple text identification, a complex logo, images, or UID traceability with integration of readers and verifiers.

This economically designed laser enclosure features a manual operated hinged door with safety interlock, a manual z-axis for laser focus adjustment, and self-contained rack mounted controls.

Our newest series of laser system enclosures features a powder coated cabinet with a 22 inch wide stainless steel door. This enclosure has a programmable power z-axis for automatic laser focus adjustment, a removable side panel for convenient access to the laser head and lens, and can be fully customized for larger part configurations.
LASER SYSTEM ENCLOSURES

Schmidt Marking Systems will design a laser system to fit your specific part marking application. Our class 1 certified laser enclosures feature safety interlocks for light tight marking environments. Our enclosures can be furnished with a variety of system options such as manual or programmable power z-axis for laser focus adjustment, rotary devices for marking on round parts, part feeders, indexing tables, X-Y tables, and vision systems complete with readers and verifiers. Our Fiber, DPSS and CO2 laser systems offer solutions for a variety of applications such as marking, annealing, ablation, deep or fine surface engraving. Schmidt lasers can perform on a variety of materials such as metal alloys, plastics, organics, glass and ceramics. Schmidt can provide an ideal marking solution whether the application involves simple text identification, a complex logo, images, or UID traceability with integration of readers and verifiers.

This economically designed laser enclosure features a manual operated hinged door with safety interlock, a manual z-axis for laser focus adjustment, and self-contained rack mounted controls.

Our newest series of laser system enclosures feature a powder coated cabinet with a 22 inch wide stainless steel door. This enclosure has a programmable power z-axis for automatic laser focus adjustment, a removable side panel for convenient access to the laser head and lens, and can be fully customized for larger part configurations.

This custom laser enclosure features a two position rotary indexing table. One set of parts can be loaded outside of the enclosure while another set of parts is being marked inside. The indexing table is equipped with anti-tie-down dual palm controls for operator safety.

LASER ENCLOSURE OPTIONS AND SYSTEM ACCESSORIES

- Manual or Powered Doors
- 2D Data Matrix & 1D & 2D Barcodes
- Manual or Programmable Z-Axis
- Readers, Verifiers, Writers & Cameras
- Variety of Laser Source Options
- Nameplate Feed Systems
- Multiple Laser Stages
- Rotary Indexing Table
- Light Curtains
- Dome Extrusions
- X-Y Tables
- 2-C Collet & 3 Jaw Chuck Rotary Indexers
- Anti-tie-down dual palm safety controls
- Rotary Indexers can spin parts up to 150 lbs.
- Pick and Place systems
- Additional Side Doors & Removable Panels